Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334740

RESUMO

The work loop technique has provided key insights into in vivo muscle work and power during steady locomotion. However, for many animals and muscles, ex vivo experiments are not feasible. In addition, purely sinusoidal strain trajectories lack variations in strain rate that result from variable loading during locomotion. Therefore, it is useful to develop an 'avatar' approach in which in vivo strain and activation patterns from one muscle are replicated in ex vivo experiments on a readily available muscle from an established animal model. In the present study, we used mouse extensor digitorum longus (EDL) muscles in ex vivo experiments to investigate in vivo mechanics of the guinea fowl lateral gastrocnemius (LG) muscle during unsteady running on a treadmill with obstacle perturbations. In vivo strain trajectories from strides down from obstacle to treadmill, up from treadmill to obstacle, strides with no obstacle and sinusoidal strain trajectories at the same amplitude and frequency were used as inputs in work loop experiments. As expected, EDL forces produced with in vivo strain trajectories were more similar to in vivo LG forces (R2=0.58-0.94) than were forces produced with the sinusoidal trajectory (average R2=0.045). Given the same stimulation, in vivo strain trajectories produced work loops that showed a shift in function from more positive work during strides up from treadmill to obstacle to less positive work in strides down from obstacle to treadmill. Stimulation, strain trajectory and their interaction had significant effects on all work loop variables, with the interaction having the largest effect on peak force and work per cycle. These results support the theory that muscle is an active material whose viscoelastic properties are tuned by activation, and which produces forces in response to deformations of length associated with time-varying loads.


Assuntos
Galliformes , Corrida , Camundongos , Animais , Fenômenos Biomecânicos , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Galliformes/fisiologia , Contração Muscular/fisiologia
2.
ACS Omega ; 7(9): 7541-7549, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284724

RESUMO

Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)2-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)2-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)2-SiPc or PC61BM. PBDB-T/(3BS)2-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V oc) as high as 1.06 V, which is among the highest V oc obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V oc. Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)2-SiPc as an NFA. These findings suggest that (3BS)2-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs.

3.
Sci Rep ; 11(1): 15347, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321540

RESUMO

While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.

4.
ACS Nano ; 15(5): 8252-8266, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33831298

RESUMO

Ultrapure semiconducting single-walled carbon nanotube (sc-SWNT) dispersions produced through conjugated polymer sorting are ideal candidates for the fabrication of solution-processed organic electronic devices on a commercial scale. Protocols for sorting and dispersing ultrapure sc-SWNTs with conjugated polymers for thin-film transistor (TFT) applications have been well refined. Conventional wisdom dictates that removal of excess unbound polymer through filtration or centrifugation is necessary to produce high-performance TFTs. However, this is time-consuming, wasteful, and resource-intensive. In this report, we challenge this paradigm and demonstrate that excess unbound polymer during semiconductor film fabrication is not necessarily detrimental to device performance. Over 1200 TFT devices were fabricated from 30 unique polymer-sorted SWNT dispersions, prepared using two different alternating copolymers. Detailed Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) studies of the random-network semiconductor films demonstrated that a simple solvent rinse during TFT fabrication was sufficient to remove unbound polymer from the sc-SWNT films, thus eliminating laborious polymer removal before TFT fabrication. Furthermore, below a threshold polymer concentration, the presence of excess polymer during fabrication did not significantly impede TFT performance. Preeminent performance was achieved for devices prepared from native polymer-sorted SWNT dispersions containing the "original" amount of excess unbound polymer (immediately following enrichment). Lastly, we developed an open-source Machine Learning algorithm to quantitatively analyze AFM images of SWNT films for surface coverage, number of tubes, and tube alignment.

5.
ACS Appl Mater Interfaces ; 13(1): 1008-1020, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33370100

RESUMO

Metal and metalloid phthalocyanines are an abundant and established class of materials widely used in the dye and pigment industry as well as in commercial photoreceptors. Silicon phthalocyanines (SiPcs) are among the highest-performing n-type semiconductor materials in this family when used in organic thin-film transistors (OTFTs) as their performance and solid-state arrangement are often increased through axial substitution. Herein, we study eight axially substituted SiPcs and their integration into solution-processed n-type OTFTs. Electrical characterization of the OTFTs, combined with atomic force microscopy (AFM), determined that the length of the alkyl chain affects device performance and thin-film morphology. The effects of high-temperature annealing and spin coating time on film formation, two key processing steps for fabrication of OTFTs, were investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD) to elucidate the relationship between thin-film microstructure and device performance. Thermal annealing was shown to change both film crystallinity and SiPc molecular orientation relative to the substrate surface. Spin time affected film crystallinity, morphology, and interplanar d-spacing, thus ultimately modifying device performance. Of the eight materials studied, bis(tri-n-butylsilyl oxide) SiPc exhibited the greatest electron field-effect mobility (0.028 cm2 V-1 s-1, a threshold voltage of 17.6 V) of all reported solution-processed SiPc derivatives.

6.
Heliyon ; 6(6): e04129, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551382

RESUMO

There are a myriad of laws, guidelines and unwritten agreements relating to human, hominid and hominin remains. Legal gaps and inadequate definitions of what constitutes a fossil have meant that a 'finders keepers' approach is often applied to the ownership and control of our ancestors' remains. Such shortcomings expose numerous legal and ethical conundrums. Should any one organisation, individual or government control access to recently-found remains, limiting opportunities to unlock the secrets of evolution? Given that humans can start fossilisation processes immediately after burial, at what point does it become appropriate to dig up their remains? And who should control access to them? Could any prehistoric Homo ever have imagined they would one day be exhumed and their remains laid out in cases as the centrepiece of a museum exhibit? This paper surveys a number of implications that arise from these foundational questions, and ultimately challenges the belief that human, hominin and hominid remains are self-evident 'objects' capable of clear ownership: rather they constitute creative cultural intersections, which are deserving of greater ethical consideration. Protocols for respecting, protecting and conserving remains while allowing a greater equity in access to information about our common ancestors are both desirable and urgently required.

7.
Langmuir ; 36(13): 3550-3557, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32163710

RESUMO

The increased demand for electronic devices, combined with a desire to minimize the environmental impact, necessitates the development of new eco-friendly materials. One promising approach is the incorporation of renewable and green materials that possess the desired mechanical and electrical properties while allowing for more ecologically friendly disposal of these devices. The addition of low-weight percentages (0.25-0.75 wt %) of cellulose nanocrystals (CNCs) was investigated as an environmentally friendly additive in aqueous dispersions of poly(vinyl alcohol) (PVA). It was found that these low CNC loadings were sufficient to induce a favorable increase in viscosity, which in turn dramatically enhanced the film quality of the PVA blends through an improvement in the critical radius of the spun film, overall film thickness, and homogeneity of the thin film. This corresponded to an increase in the number of functioning organic electronic devices that could be fabricated by spin coating, including metal-insulator-metal (MIM) capacitors and organic thin-film transistors (OTFTs). Most importantly, the incorporation of CNCs into PVA did not significantly alter the native dielectric properties of the polymer thin films when incorporated into both MIM capacitors and OTFTs.

8.
J Exp Biol ; 223(Pt 2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31862847

RESUMO

The active isometric force produced by muscles varies with muscle length in accordance with the force-length relationship. Compared with isometric contractions at the same final length, force increases after active lengthening (force enhancement) and decreases after active shortening (force depression). In addition to cross-bridges, titin has been suggested to contribute to force enhancement and depression. Although titin is too compliant in passive muscles to contribute to active tension at short sarcomere lengths on the ascending limb and plateau of the force-length relationship, recent evidence suggests that activation increases titin stiffness. To test the hypothesis that titin plays a role in force enhancement and depression, we investigated isovelocity stretching and shortening in active and passive wild-type and mdm (muscular dystrophy with myositis) soleus muscles. Skeletal muscles from mdm mice have a small deletion in the N2A region of titin and show no increase in titin stiffness during active stretch. We found that: (1) force enhancement and depression were reduced in mdm soleus compared with wild-type muscles relative to passive force after stretch or shortening to the same final length; (2) force enhancement and force depression increased with amplitude of stretch across all activation levels in wild-type muscles; and (3) maximum shortening velocity of wild-type and mdm muscles estimated from isovelocity experiments was similar, although active stress was reduced in mdm compared with wild-type muscles. The results of this study suggest a role for titin in force enhancement and depression, which contribute importantly to muscle force during natural movements.


Assuntos
Contração Muscular/genética , Músculo Esquelético/fisiologia , Mutação/genética , Proteínas Quinases/genética , Animais , Fenômenos Biomecânicos , Feminino , Masculino , Camundongos , Proteínas Quinases/metabolismo
9.
ACS Sens ; 4(10): 2706-2715, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31453690

RESUMO

Quality control is imperative for Cannabis since the primary cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), elicit very different pharmacological effects. THC/CBD ratios are currently determined by techniques not readily accessible by consumers or dispensaries and which are impractical for use in the field by law-enforcement agencies. CuPc- and F16-CuPc-based organic thin-film transistors have been combined with a cannabinoid-sensitive chromophore for the detection and differentiation of THC and CBD. The combined use of these well-characterized and inexpensive p- and n-type materials afforded the determination of the CBD/THC ratio from rapid plant extracts, with results indistinguishable from high-pressure liquid chromatography. Analysis of the prepyrolyzed sample accurately predicted postpyrolysis THC/CBD, which ultimately influences the psychotropic and medicinal effects of the specific plant. The devices were also capable of vapor-phase sensing, producing a unique electrical output for THC and CBD relative to other potentially interfering vaporized organic products. The analysis of complex medicinal plant extracts and vapors, normally reserved for advanced analytical infrastructure, can be achieved with ease, at low cost, and on the spot, using organic thin-film transistors.


Assuntos
Canabidiol/análise , Dronabinol/análise , Canabidiol/química , Cobre/química , Dronabinol/química , Indóis/química , Compostos Organometálicos/química , Extratos Vegetais/química , Silanos/química , Transistores Eletrônicos , Volatilização
10.
Front Robot AI ; 5: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500922

RESUMO

Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a "winding filament" hypothesis (WFH) for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4-5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = -8 to -19°) and ankle moments (range = 1 to 1.5 Nm/kg) similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range -15 to -19°) that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at variable speed and stair ascent with minimal sensing and no change in parameters.

11.
Materials (Basel) ; 11(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271885

RESUMO

Bottom-gate bottom-contact organic thin film transistors (OTFTs) were prepared with four novel star-shaped conjugated molecules containing a fused thieno[3,2-b]thiophene moiety incorporated either in the core and/or at the periphery of the molecular framework. The molecules were soluble in CS2, allowing for solution-processing techniques to be employed. OTFTs with different channel geometries were characterized in both air and vacuum in order to compare environmental effects on performance. Blending the small molecules with poly(styrene), an insulating polymer, facilitated the formation of an even semiconducting film, resulting in an order of magnitude increase in device mobility. The highest field-effect mobilities were in air and on the order of 10-3 cm²/Vs for three of the four molecules, with a maximum mobility of 9.2 × 10-3 cm²/Vs achieved for the most conjugated small molecule. This study explores the relationship between processing conditions and OTFT devices performance for four different molecules within this new family of materials, resulting in a deeper insight into their potential as solution-processable semiconductors.

12.
Chemistry ; 22(41): 14560-6, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27514320

RESUMO

The separation and isolation of semiconducting and metallic single-walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene-co-pyridine) copolymer and its cationic methylated derivative, and show that electron-deficient conjugated π-systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis-NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.

13.
Methods Mol Biol ; 1132: 39-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599845

RESUMO

Sequencing of chloroplast genomes is a key tool for analysis of chloroplasts and the impact of manipulation of chloroplast genomes by biotechnology. Advances in genome sequencing allow the complete sequencing of the chloroplast genome and assessment of variation in the chloroplast genome sequences within a plant. Isolation of chloroplast DNA has been a traditional starting point in these analyses, but the capacity of current sequencing technologies allows effective analysis of the chloroplast genome sequence by shotgun sequencing of a preparation of total DNA from the plant. Chloroplast insertions in the nuclear genome can be distinguished by their much lower copy number. Short-read sequences are best assembled by alignment with a reference chloroplast genome.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico , DNA de Cloroplastos/análise , DNA de Cloroplastos/isolamento & purificação , Folhas de Planta/genética , Alinhamento de Sequência
14.
Ecol Evol ; 2(1): 211-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22408737

RESUMO

Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.

15.
Plant Biotechnol J ; 9(3): 328-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20796245

RESUMO

Chloroplast DNA sequence data are a versatile tool for plant identification or barcoding and establishing genetic relationships among plant species. Different chloroplast loci have been utilized for use at close and distant evolutionary distances in plants, and no single locus has been identified that can distinguish between all plant species. Advances in DNA sequencing technology are providing new cost-effective options for genome comparisons on a much larger scale. Universal PCR amplification of chloroplast sequences or isolation of pure chloroplast fractions, however, are non-trivial. We now propose the analysis of chloroplast genome sequences from massively parallel sequencing (MPS) of total DNA as a simple and cost-effective option for plant barcoding, and analysis of plant relationships to guide gene discovery for biotechnology. We present chloroplast genome sequences of five grass species derived from MPS of total DNA. These data accurately established the phylogenetic relationships between the species, correcting an apparent error in the published rice sequence. The chloroplast genome may be the elusive single-locus DNA barcode for plants.


Assuntos
DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Poaceae/classificação , Poaceae/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Padrões de Referência , Alinhamento de Sequência
17.
Chem Commun (Camb) ; (47): 4937-9, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17136253

RESUMO

Suitably modified linear conjugated poly(arylene ethynylene)s are able to assist effective debundling and dispersion of crude as-prepared single-walled carbon nanotube powders in organic solvents, the dispersion of which is effected via a surface coating mechanism and, to some extent, in a size-selective fashion.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Estrutura Molecular , Tamanho da Partícula , Pós/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...